Skip to main content

Хоменко Н.Н. Интеллектуальная система для выявления, анализа и разрешения противоречий. 1988 (89?)

От редактора

Эта небольшая статья, составленная из двух материалов Минской части бумажного архива, посвящена вопросам разработки компьютерной версии АРИЗ в системе «Изобретающая машина». Задача формализации алгоритма, возникшая в ходе работы над ИМ,  позволила найти точки его развития.

Редактор материала - А.А. Нестеренко. Деп. в ЧОУНБ 12.10.13 № 3577

text: 

Система предназначена для выявления, анализа и разрешения противоречий в изобретательских задачах на основе алгоритма решения изобретательских задач (АРИЗ). За основу взят АРИЗ-85-В [1] Работает система в диалоговом режиме: задает вопросы пользователю, при необходимости снабжая их краткими или развернутыми комментариями, дает справки по ТРИЗ и ТРТС, иллюстрирует их примерами.

Трудности организации общения на естественном языке заставили строить несколько громоздкие и непривычные, но в целом понятные пользователю фразы.

ЭВМ:  Для чего предназначена Ваша система?[1]

Пользователь: -  Для запайки ампул.

ЭВМ: Какое вредное воздействие возникает при этом?

Пользователь: - Портится лекарство.

ЭВМ: Какой элемент системы является «виновником»?

Пользователь: - Пламя горелки.

ЭВМ: Что полезное делает пламя горелки в Вашей системе?

Пользователь: - Нагревает ампулу.

ЭВМ: Выходит, что для запайки ампул пламя горелки нагревает ампулу, но при этом тот же элемент (пламя горелки) совершает вредное действие, состоящее в том, что портится лекарство.

Необходимо устранить вредное действие – портится лекарство, сохранив полезное – нагревает ампулу.

Процесс решения задач по АРИЗ представляет собой цепь дроблений исходной ситуации  и переходов к новой, уточненной задаче. Разработка интеллектуальной системы поддержки решения изобретательских задач обострила проблему детализации перехода «противоречие – принцип разрешения противоречия». Для решения этой проблемы предлагается использовать известное в ТРИЗ типовое решение – если есть два объекта, взаимодействие которых нас не устраивает, то между ними надо ввести третий объект, который должен являться видоизменением первых двух. В нашем случае такими объектами являются собственно противоречие и методы разрешения противоречий [1], а решением – совмещение шагов, направленных на формулировку противоречия с шагами по разрешению искомого противоречия. В результате использования этой идеи участились случаи выхода на решение в процессе поиска ФП, т.е.  противоречие решалось до того, как его сформулировали.

Для облегчения работы пользователя потребовалась детализация следующих шагов АРИЗ: формулировка технического противоречия, его обострение и разрешение, анализ ресурсов. Как уже говорилось выше, формулировку физического противоречия (ФП) пришлось детализировать, совместив с анализом пространственно-временных и вещественно-полевых ресурсов, разделив на несколько элементарных ФП в соответствии со способами их разрешения. Для этого введено понятие многомерного параметрического пространства конфликта, а разрешение конфликта рассматривается как перестройка структур в этом параметрическом пространстве. Причем структуры характеризуются не только пространственными параметрами, но и временными (пространственно-временные структуры), и любыми другими параметрами, с помощью которых описываются конфликты в тех или иных системах.

Конфликт изобретательской задачи протекает в некотором  n-мерном параметрическом пространстве. Для каждого из параметров и имеющихся пространственно-временных и вещественно-полевых ресурсов необходимо подобрать свой способ разрешения противоречия, а затем из полученных частичных решений (моносистем) синтезировать общее решение (полисистему) или несколько вариантов общих решений (несколько полисистем). Таким образом, обостряется проблема создания технологии объединения нескольких моносистем (или частичных решений) в полисистему с получением нового (системного) качества, которым не обладает ни одна из моносистем. На сегодняшний день это первостепенная проблема на пути создания эффективных средств решения изобретательских задачи и синтеза новых систем в различных областях знаний.

Для решения этой задачи необходим анализ уже имеющихся сильных решений и выявление новых закономерностей развития систем. В частности, закономерностей, определяющих выбор исходных моносистем и управляющих их объединением с получением нового качества – системного эффекта.

Главное положительное качество системы заключается в том, что облегчается выявление и анализ противоречий, причем пользователь вынужден мыслить последовательно. Исключаются разрывы в логике анализа, часто встречающиеся на первых порах освоения АРИЗ. В процессе работы с системой пользователь приобретает некоторые знания из теории развития технических систем (ТРТС) и ТРИЗ, овладевает опытом практического использования полученных знаний, поэтому можно говорить и об обучающем эффекте системы. Все это приводит к снижению необходимого исходного объема знания из области ТРИЗ и ТРТС, обеспечивающего решение производственных проблем пользователя, т.к. необходимую информацию пользователь получает в процессе работы. Поэтому будущих пользователей необходимо в первую очередь и  более основательно, знакомить с общим принципом подхода к решению задач с позиций ТРИЗ, ТРТС, ТРТЛ, а детали практического применения даст система.

Опыт эксплуатации системы при решении нескольких десятков задач показал необходимость такой предварительной углубленной общей подготовки пользователя. В противном случае человек проходит мимо предлагаемых системой интересных решений его проблемы.

Литература

Альтшуллер Г.С. Найти идею. – Новосибирск, Наука, 1986




[1] Выделенный курсивом текст взят из другого черновика (прим. редактора).